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Outline

The long ITER resitive wall penetration time τwall can have mitigating effects
on TQ, REs, and asymmetric wall force

• Thermal quench

– TQ time can depend on τwall because of resistive wall tearimg mode

• Asymmetric wall force depends on Swall = τwall/τA

– Cold disruptions : small force when CQ time τCQ ≤ τwall

– Hot disruptions : small force when Swall >> 100.

• REs in cold disruptions

– Runaway electrons can cause large wall force when RE current fraction ≈ 1.

– Longer TQ time can reduce RE current fraction
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Thermal Quench Simulations
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Simulations with M3D initialized with ITER [Strauss, PoP 2018] inductive Scenario
2 15 MA with current profile modified to represent MGI mitigation. Current set to
zero outside q = 2 magnetic surface [Izzo 2008], keeping total current unchanged.
Temperature also lowered outside the q =2 surface, increasing the resistivity which
varied as T−3/2. This made plasma MHD unstable. Parallel thermal conduction
assumed with Te = 100eV at the wall. In the simulations S = 106 initially on axis.

(a) T at t = 2163τA, Swall = 103.

(b) P history for cases, Swall = 103,2.5 × 103,104, showing normal asymmetric
magnetic field at the wall bn as a function of time. As bn increases in time, P falls

more rapidly. (c) normalized TQ time τTQ/τA vs. Swall Fit to τTQ ∝ S
4/9
wall, suggests a

RWTM [Finn, 1995].
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Thermal Quench with RWTM
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where br is the normalized asymmetric normal magnetic field, assuming circular flux
surfaces for simplicity. Integrating, the total temperature is given by
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where < T >=
∫

Trdr, T ′ = ∂T/∂r(a), c1 =< T > /(a3T ′).
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where the last term is quasilinear diffusion, and γRWτA ∝ S−1/3S
−4/9
wall . Then obtain

the ad hoc formula

τTQ ≈
c1τA

c0S−1/3S
−4/9
wall + κ̂⊥ + κ̂‖b

2
0
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where κ̂‖ = κ‖/(a
2τA), κ̂⊥ = κ⊥/(a

2τA), with c0 = O(1).
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TQ Timescales
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(a) τTQ for cases with S = 104,105, 106, with Swall = 104, κ̂‖ = 10, κ̂⊥ = 10−4.

The scaling is STQ ≈ S1/3. This gives STQ = τTQ/τA = 0.7S
4/9
w S1/3.

(b) effect of varying Te on κ‖ and STQ.

tTQ ≈ 1/(κ̂‖b
2
0) ≈ 104τA = 10ms, b0 ≈ 3× 10−3, Te ≈ 100eV.

If c0 ≈ 1/3, S = Swall = 104, then tTQ ≈ S1/3S
4/9
wall ≈ 2ms.

If TQ time is due to RWTMs, then τTQ ∝ S
4/9
wall is about 6 times longer in ITER than in

JET.

This could reduce thermal loading and RE generation.
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ITER cold disruptions - asymmetric wall force

• cold disruptions - TQ precedes VDE and CQ. ∆Fx depends on τCQ/τwall. For
expected ITER τCQ/τwall < 1 ∆Fx ≈ 5MN .
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(a) Time history of I, Zp, ∆Fx, P in wall time units [Strauss, 2018]. Simulation with
τCQ/τwall = 1/2

(b) ∆Fx vs. τCQ/τwall with ∆Fx < 30MN. Also shown is halo fraction HF .
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Sideways wall force in JET disruptions

Simulations were done with M3D and recently with M3DC1 codes. The runs were
initialized with a reconstruction of JET shot 71985. The current quench time τCQ was
controlled by an applied electric field. The wall force is quenched for τCQ ≤ τwall.
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Solid curves: M3D and M3DC1 simulations where τCQ/τwall was varied. Plots of
asymmetric wall force ∆Fx and Noll force ∆FN = πB∆MIZ.∆FxC1, M3DC1 wall
force, ∆FNC1, M3DC1 Noll force, ∆Fxm3, M3D wall force, ∆FNm3, M3D Noll force.

Comparison with data: dots: ∆FN and τCQ calculated for all JET shots in ILW dis-
ruption database, 2011 - 2016, labeled ∆FNJET . Points ”VDE” are VDE shots, and
all shots. (JET Data discussed with E. Joffrin and S. Gerasimov and presented at
ITPA meeting, Daejeong, Korea, April 2019)
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ITER hot disruptions

• hot disruptions - VDE precedes TQ and CQ ∆Fx is maximum for γτwall ∼ 1. In
ITER γτwall >> 1 and ∆Fx is small.
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asymmetric force in hot disruption simulations [Strauss et al. NF 2013] with ∆Fx <
60MN. VDE caused plasma and flux to scrape off at the wall, until the edge q ≈ 2.
Also shown are “extra - hot” disruption with ∆Fx < 200,250MN. ∆Fx vs. Swall.
They were produced with 2D VDE of model MGI equilibria, then evolving in 3D.

For ITER relevant Swall the force is small, unless there are REs with τCQ >> τwall
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Runaway Electrons - Fluid model

If REs carry the current, it is possible that τCQ >> τwall. MHD simulations were
extended by adding RE fluid model. Runaway fluid equations are

[Helander 2007],[Cai and Fu 2015]

1

c

∂ψ

∂t
= ∇‖Φ− η(J‖ − J‖RE) (5)

and J‖RE is the RE current density.The RE continuity equation can be expressed,

assuming the REs have speed c

∂J‖RE

∂t
≈ −cB · ∇

(

J‖RE

B

)

+ SRE (6)

where SRE in the following is a model source term.

SRE = α(t)(J‖ − J‖RE)J‖RE > 0 (7)

Approximately

B · ∇

(

J‖RE

B

)

= O(vA/c) ≈ 0 (8)

which is solved similarly to electron temperature, like a bounce average method.
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ITER REs

With REs, 2 quantities determine wall force, τCQ/τwall and IREmax/Ip0.
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(a) ∆Fx, I, IRE, and Zp as functions of time t/τwall, for IRE = I0. (b) ∆Fx as a
function of τCQ/τwall. Also shown are ∆FREa, where a = 1,2/3,1/2. The wall
force depends on the ratio of RE current to initial current.

If IRE/I0 ≤ 1/2, the force is small.

If IRE/I0 = 1, the force is the same as having a long CQ time.
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Summary

• Long ITER τwall has a mitigating effect on disruptions

• TQ time can depend on RWTM. In ITER, TQ time might be 10ms.

– reduce thermal load rate

– reduce RE generation rate

• ITER asymmetric wall force is small in cold and hot disruptions

– cold disruptions - TQ precedes VDE. Force is small for τCQ ≤ τwall.

– hot disruptions - VDE precedes TQ, CQ. Force is small for γτwall >> 1

• REs

– can affect cold disruptions, probably not relevant in hot disruptions

– If ratio of RE current to initial current, IRE/Ip0 ≈ 1, the force can be large.
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